TTIC 31150/CMSC 31150 Mathematical Toolkit (Spring 2023)

Avrim Blum and Ali Vakilian
TAs: Xiao Luo and Kumar Kshitij Patel

Lecture 1: Fields and Vector Spaces

Welcome to Mathematical Toolkit

Course goal: develop basic mathematical tools useful in various areas of CS. Focus on linear algebra and probability: both underlying theory and various applications.

- Canvas site and webpage
- Lecture notes on webpage
- Homework 1 out today, due March 29.
- Optional but recommended discussion session [Fri 2:00-2:50 in TTIC 529]
- Coursework: 5 homeworks (12\% each, 60% total), 1 midterm (15\%), 1 final (25\%).

> Let's get started!

1 Fields

A field, often denoted by \mathbb{F}, is simply a nonempty set with two associated operations + and \cdot mapping $\mathbb{F} \times \mathbb{F} \rightarrow \mathbb{F}$, which satisfy:

- commutativity: $a+b=b+a$ and $a \cdot b=b \cdot a$ for all $a, b \in \mathbb{F}$.
- associativity: $a+(b+c)=(a+b)+c$ and $a \cdot(b \cdot c)=(a \cdot b) \cdot c$ for all $a, b, c \in \mathbb{F}$.
- identity: There exist elements $0_{\mathbb{F}}, 1_{\mathbb{F}} \in \mathbb{F}$ such that $a+0_{\mathbb{F}}=a$ and $a \cdot 1_{\mathbb{F}}=a$ for all $a \in \mathbb{F}$.
- inverse: For every $a \in \mathbb{F}$, there exists an element $(-a) \in \mathbb{F}$ such that $a+(-a)=0_{\mathbb{F}}$. For every $a \in \mathbb{F} \backslash\left\{0_{\mathbb{F}}\right\}$, there exists $a^{-1} \in \mathbb{F}$ such that $a \cdot a^{-1}=1_{\mathbb{F}}$.
- distributivity of multiplication over addition: $a \cdot(b+c)=a \cdot b+a \cdot c$ for all $a, b, c \in$ F.

Example 1.1 Q, \mathbb{R} and \mathbb{C} with the usual definitions of addition and multiplication are fields. But \mathbb{Z} with the usual definitions is not (why?).

Example 1.2 Consider defining addition and multiplication on \mathbb{Q}^{2} as

$$
(a, b)+(c, d)=(a+c, b+d) \quad \text { and } \quad(a, b) \cdot(c, d)=(a c+b d, a d+b c) .
$$

Field? No.
Fact. If $a \cdot b=0_{\mathbb{F}}$, then at least one of a or b is equal to $0_{\mathbb{F}}$

- Additive identity: $0_{\mathbb{Q}^{2}}=(0,0)$.
- $(1,-1) \cdot(1,1)=(0,0)$

Another Argument: Multiplicative identity must be (1,0), but then no inverse for (1,-1).

Example 1.2 Consider defining addition and multiplication on \mathbb{Q}^{2} as

$$
(a, b)+(c, d)=(a+c, b+d) \quad \text { and } \quad(a, b) \cdot(c, d)=(a c+b d, a d+b c) .
$$

Field? No. Multiplicative identity must be (1,0), but then no inverse for (1,-1).

However, for any prime p, the following operations do define a field [Will verify on homework]

$$
(a, b)+(c, d)=(a+c, b+d) \quad \text { and } \quad(a, b) \cdot(c, d)=(a c+p b d, a d+b c)
$$

This is equivalent to taking $\mathbb{F}=\{a+b \sqrt{p} \mid a, b \in \mathbb{Q}\}$ with the same notion of addition and multiplication as for real numbers. Alternatively, one can also define a field by taking (a, b). $(c, d)=(a c-b d, a d+b c)(w h y ?)$

Example 1.3 For any prime p, the set $\mathbb{F}_{p}=\{0,1, \ldots, p-1\}$ (also denoted as $G F(p)$) is a field with addition and multiplication defined modulo p.

2 Vector Spaces

A vector space V over a field \mathbb{F} is a nonempty set with two associated operations + : $V \times V \rightarrow V$ (vector addition) and $\cdot: \mathbb{F} \times V \rightarrow V$ (scalar multiplication) which satisfy:

- commutatitivity of addition: $v+w=w+v$ for all $v, w \in V$.
- associativity of addition: $u+(v+w)=(u+v)+w \forall u, v, w \in V$.
- pseudo-associativity of scalar multiplication: $a \cdot(b \cdot v)=(a \cdot b) \cdot v \forall a, b \in \mathbb{F}, v \in V$.
- identity for vector addition: There exists $0_{V} \in V$ such that for all $v \in V, v+0_{V}=v$.
- inverse for vector addition $: \forall v \in V, \exists(-v) \in V$ such that $v+(-v)=0_{V}$.
- distributivity: $a \cdot(v+w)=a \cdot v+a \cdot w$ and $(a+b) \cdot v=a \cdot v+b \cdot v$ for all $a, b \in \mathbb{F}$ and $v, w \in V$.
- identity for scalar multiplication: $1_{\mathbb{F}} \cdot v=v$ for all $v \in V$.

Definition 2.1 (Linear Dependence) A set $S \subseteq V$ is linearly dependent if there exist distinct $v_{1}, \ldots, v_{n} \in S$ and $a_{1}, \ldots, a_{n} \in \mathbb{F}$ not all zero, such that $\sum_{i=1}^{n} a_{i} \cdot v_{i}=0_{V}$. A set which is not linearly dependent is said to be linearly independent.

Let's consider \mathbb{R}^{2}

- Give an example of 3 vectors that are linearly dependent.
- Give an example of 2 vectors that are linearly independent.

Example 2.3 The set $\{1, \sqrt{2}, \sqrt{3}\}$ is linearly independent in the vector space \mathbb{R} over the field \mathbb{Q}.
Example 2.4 $\mathbb{R}[X]$ is a vector space over \mathbb{R}. (This is the set of polynomials in X with real-valued coefficients).

Example 2.5 $C([0,1], \mathbb{R})=\{f:[0,1] \rightarrow \mathbb{R} \mid f$ is continuous $\}$ is a vector space over \mathbb{R}.
Example 2.6 $\mathrm{Fib}=\left\{f \in \mathbb{R}^{\mathbb{N}} \mid f(n)=f(n-1)+f(n-2) \forall n \geq 2\right\}$ is a vector space over \mathbb{R}.

Proposition 2.7 Let $b_{1}, \ldots, b_{n} \in \mathbb{R}$ be distinct and let $g(x)=\prod_{i=1}^{n}\left(x-b_{i}\right)$. Define

$$
f_{i}(x)=\frac{g(x)}{x-b_{i}}=\prod_{j \neq i}\left(x-b_{j}\right),
$$

where we extend the function at point b_{i} by continuity. Prove that f_{1}, \ldots, f_{n} are linearly independent in the vector space $\mathbb{R}[x]$ over the field \mathbb{R}.

Proof: First of all, 0_{V} is the zero polynomial. For contradiction, assume the f_{i} are linearly dependent, so there exists a_{1}, \ldots, a_{n} not all zero such that $a_{1} f_{1}(x)+\ldots+a_{n} f_{n}(x)$ is the zero polynomial (i.e., it equals 0 no matter what value is given for x). Let a_{i} be some nonzero coefficient (we are guaranteed there is at least one). If we feed in $x=b_{i}$, then all terms of the polynomial become 0 except for $a_{i} f_{i}\left(b_{i}\right)$. This term is non-zero because the b^{\prime} 's are all distinct and $a_{i} \neq 0$. Contradiction.

3 Linear Independence and Bases

Definition 3.1 Given a set $S \subseteq V$, we define its span as

$$
\operatorname{Span}(S)=\left\{\sum_{i=1}^{n} a_{i} \cdot v_{i} \mid a_{1}, \ldots, a_{n} \in \mathbb{F}, v_{1}, \ldots, v_{n} \in S, n \in \mathbb{N}\right\}
$$

Note that we only include finite linear combinations.

Definition 3.3 (Basis) A set B is said to be a basis for the vector space V if B is linearly independent and $\operatorname{Span}(B)=V$.

It is often useful to use the following alternate characterization of a basis.

Proposition 3.4 Let V be a vector space and let $B \subseteq V$ be a maximal linearly independent set i.e., B is linearly independent and for all $v \in V \backslash B, B \cup\{v\}$ is linearly dependent. Then B is a basis.

- If B satisfies 3.3 then also satisfies 3.4:
- If B satisfies 3.4 then also satisfies 3.3:

Proposition 3.5 (Steinitz exchange principle) Let $\left\{v_{1}, \ldots, v_{k}\right\}$ be linearly independent and $\left\{v_{1}, \ldots, v_{k}\right\} \subseteq \operatorname{Span}\left(\left\{w_{1}, \ldots, w_{n}\right\}\right)$. Then $\forall i \in[k] \exists j \in[n]$ such that $w_{j} \notin\left\{v_{1}, \ldots, v_{k}\right\} \backslash\left\{v_{i}\right\}$ and $\left\{v_{1}, \ldots, v_{k}\right\} \backslash\left\{v_{i}\right\} \cup\left\{w_{j}\right\}$ is linearly independent.

Proof: Assume not. Then, there exists $i \in[k]$ such that for all w_{j}, either $w_{j} \in\left\{v_{1}, \ldots, v_{k}\right\} \backslash$ $\left\{v_{i}\right\}$ or $\left\{v_{1}, \ldots, v_{k}\right\} \backslash\left\{v_{i}\right\} \cup\left\{w_{j}\right\}$ is linearly dependent. Note that this means we cannot have $v_{i} \in\left\{w_{1}, \ldots, w_{n}\right\}$. (In that case, $w_{j}=v_{i}$ would fail.)
The above gives that for all $j \in[n], w_{j} \in \operatorname{Span}\left(\left\{v_{1}, \ldots, v_{k}\right\} \backslash\left\{v_{i}\right\}\right)$. However, this implies

$$
\left\{v_{1}, \ldots, v_{k}\right\} \subseteq \operatorname{Span}\left(\left\{w_{1}, \ldots, w_{n}\right\}\right) \subseteq \operatorname{Span}\left(\left\{v_{1}, \ldots, v_{k}\right\} \backslash\left\{v_{i}\right\}\right),
$$

which is a contradiction.

3.1 Finitely generated spaces

A vector space V is said to be finitely generated if there exists a finite set T such that Span $(T)=V$. The following is an easy corollary of the Steinitz exchange principle.

Corollary 3.6 Let $B_{1}=\left\{v_{1}, \ldots, v_{k}\right\}$ and $B_{2}=\left\{w_{1}, \ldots, w_{n}\right\}$ be two bases of a finitely generated vector space V. Then, they must have the same size i.e., $k=n$.

- Use Exchange principle to successively replace v's with w's.
- Never use same w twice (since always linearly indep of current set).
- End with a subset of B_{2} which means $k \leq n$.
- Go in other direction to get $n \leq k$.

3.1 Finitely generated spaces

A vector space V is said to be finitely generated if there exists a finite set T such that Span $(T)=V$. The following is an easy corollary of the Steinitz exchange principle.

Corollary 3.6 Let $B_{1}=\left\{v_{1}, \ldots, v_{k}\right\}$ and $B_{2}=\left\{w_{1}, \ldots, w_{n}\right\}$ be two bases of a finitely generated vector space V. Then, they must have the same size i.e., $k=n$.

The above proves that all bases of a finitely generated vector space (if they exist!) have the same size. It is easy to see that a similar argument can also be used to prove that a basis must always exist.

Exercise 3.7 Prove that a finitely generated vector space with a generating set T has a basis (which is a subset of the generating set T).

- If not linearly independent, pick some element that can be written as a linear combination of the others and remove it. Repeat.

3.1 Finitely generated spaces

A vector space V is said to be finitely generated if there exists a finite set T such that Span $(T)=V$. The following is an easy corollary of the Steinitz exchange principle.

Corollary 3.6 Let $B_{1}=\left\{v_{1}, \ldots, v_{k}\right\}$ and $B_{2}=\left\{w_{1}, \ldots, w_{n}\right\}$ be two bases of a finitely generated vector space V. Then, they must have the same size i.e., $k=n$.

Exercise 3.8 Let V be a finitely generated vector space and let $S \subseteq V$ be any linearly independent set. Then S can be "extended" to a basis of V i.e., there exists a basis B such that $S \subseteq B$.

- Recall Proposition 3.4: a basis is a maximal linearly independent set.
- If S is not a basis, there must exist some $v \in V \backslash S$ such that $S \cup\{v\}$ is linearly independent. Add it into S and repeat.

3.1 Finitely generated spaces

A vector space V is said to be finitely generated if there exists a finite set T such that Span $(T)=V$. The following is an easy corollary of the Steinitz exchange principle.

Corollary 3.6 Let $B_{1}=\left\{v_{1}, \ldots, v_{k}\right\}$ and $B_{2}=\left\{w_{1}, \ldots, w_{n}\right\}$ be two bases of a finitely generated vector space V. Then, they must have the same size i.e., $k=n$.

Exercise 3.8 Let V be a finitely generated vector space and let $S \subseteq V$ be any linearly independent set. Then S can be "extended" to a basis of V i.e., there exists a basis B such that $S \subseteq B$.

The size of all bases of a vector space is called the dimension of the vector space, denoted as $\operatorname{dim}(V)$. Using the above arguments, it is also easy to check that any linearly independent set of the right size must be a basis.

Exercise 3.9 Let V be a finitely generated vector space and let S be a linearly independent set with $|S|=\operatorname{dim}(V)$. Prove that S must be a basis of V.

- If not, you could grow it using Prop 3.4, and get two bases of different size.

