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Lecture 1: Fields and Vector Spaces



Welcome to Mathematical Toolkit

Course goal: develop basic mathematical tools useful in various areas of CS. Focus
on linear algebra and probability: both underlying theory and various applications.

Canvas site and webpage

Lecture notes on webpage

Homework 1 out today, due March 29.

Optional but recommended discussion session [Fri 2:00-2:50 in TTIC 529]

Coursework: 5 homeworks (12% each, 60% total), 1 midterm (15%), 1 final (25%).

Let’s get started!



1 Fields

A field, often denoted by F, is simply a nonempty set with two associated operations +
and - mapping [F x [F — [F, which satisfy:

- commutativity: a +b=b+aanda-b=">b-aforalla,b € F.
- associativity: a + (b+c)=(a+b)+canda-(b-c) = (a-b)-cforalla,b,c € F.

- identity: There exist elements O, 1 € F such that a + 0 = a and a - 1 = a for all
ac .

- inverse: For every a € F, there exists an element (—a) € [F such thata + (—a) = Op.
For every a € F\ {Of}, there exists a~! € Fsuch thata-a~! = 1p.

- distributivity of multiplication over addition: a- (b+c) =a-b+a-cforalla,b,c €
IF.

Example 1.1 Q, R and C with the usual definitions of addition and multiplication are fields. But
Z. with the usual definitions is not (why?).



Example 1.2 Consider defining addition and multiplication on Q? as

(a,b)+ (¢, d) = (a+c,b+d) and (a,b) - (c,d) = (ac + bd,ad + bc) .

Field? No.
Fact. If a - b = O, then at least one of a or b is equal to O

* Additive identity: 0z = (0, 0).

* (1,-1) - (1,1) = (0,0)

Another Argument: Multiplicative identity must be (1,0), but then no inverse for (1,-1).



Example 1.2 Consider defining addition and multiplication on Q? as

(a,b)+ (c,d) = (a+c,b+d) and (a,b) - (c,d) = (ac + bd,ad + bc) .

Field? No. Multiplicative identity must be (1,0), but then no inverse for (1,-1).

However, for any prime p, the following operations do define a field [Will verify on homework]
(a,b) + (¢,d) = (a+c,b+d) and (a,b)-(c,d) = (ac + pbd, ad + bc) .

This is equivalent to taking F = {a+b\/p|a,b € Q} with the same notion of addition and
multiplication as for real numbers. Alternatively, one can also define a field by taking (a,b) -
(¢,d) = (ac — bd,ad + bc) (why?)

Example 1.3 For any prime p, the set F, = {0,1,...,p — 1} (also denoted as GF(p)) is a field
with addition and multiplication defined modulo p.



2 Vector Spaces

A vector space V over a field IF is a nonempty set with two associated operations + :
V x V — V (vector addition) and - : [F x V — V (scalar multiplication) which satisfy:

commutatitivity of addition: v + w = w+ v forallv,w € V.

- associativity of addition: u + (v +w) = (u +v) +wVu,v,w € V.

- pseudo-associativity of scalar multiplication: a- (b-v) = (a-b)-vVa,be F,v € V.
- identity for vector addition: There exists Oy € V such that forallv € V, v+ 0y = v.
- inverse for vector addition:Vv € V, 3(—v) € V such thatv + (—v) = Oy.

- distributivity: a- (v+w) =a-v+a-wand (a+b)-v=a-v+b-vforallab € F
and v, w € V.

- identity for scalar multiplication: 1g-v = v forallv € V.

Definition 2.1 (Linear Dependence) A set S C V is linearly dependent if there exist distinct
v1,...,0y € Sand ay,...,a, € F not all zero, such that } ;' , a; - v; = Oy. A set which is not
linearly dependent is said to be linearly independent. X }

Equivalently, one can be written as a
inear combination of the others]



Let’s consider R4

* Give an example of 3 vectors that are linearly dependent.

* Give an example of 2 vectors that are linearly independent.



Example 2.3 The set { 1,v2,V/3 } is linearly independent in the vector space R over the field Q.

Example 2.4 R[X] is a vector space over R. (This is the set of polynomials in X with real-valued
coefficients).

Example 2.5 C([0,1],R) = {f : [0,1] — R | f is continuous} is a vector space over R.

Example 2.6 Fib = {f € R™ | f(n) = f(n —1) + f(n —2) Vn > 2} is a vector space over RR.



Proposition 2.7 Let by, ..., b, € R be distinct and let ¢(x) = [1i_1(x — b;). Define

o) = S5 TTx—b)),
i#i

where we extend the function at point b; by continuity. Prove that fi,..., f, are linearly indepen-
dent in the vector space R[x] over the field R.

Proof: First of all, Oy is the zero polynomial. For contradiction, assume the f; are linearly
dependent, so there exists ay, ..., 4, not all zero such that a; f1(x) + ... + a, fu(x) is the zero
polynomial (i.e., it equals 0 no matter what value is given for x). Let a; be some nonzero
coefficient (we are guaranteed there is at least one). If we feed in x = b;, then all terms of
the polynomial become 0 except for a;f;(b;). This term is non-zero because the b’s are all
distinct and a; # 0. Contradiction. |



3 Linear Independence and Bases

Definition 3.1 Given aset S C V, we define its span as
n
Span (S) = <)Y ai-vi|ay,...,a, €F,01,...,v,€S,neN; .
i=1

Note that we only include finite linear combinations.

Definition 3.3 (Basis) A set B is said to be a basis for the vector space V' if B is linearly indepen-
dent and Span (B) = V.

It is often useful to use the following alternate characterization of a basis.

Proposition 3.4 Let V be a vector space and let B C 'V be a maximal linearly independent set i.e.,
B is linearly independent and for all v € V' \ B, BU {v} is linearly dependent. Then B is a basis.

e |If B satisfies 3.3 then also satisfies 3.4:

e If B satisfies 3.4 then also satisfies 3.3:



Proposition 3.5 (Steinitz exchange principle) Let {vq,..., vk} be linearly independent and
{v1,..., 0k} C Span ({wy, ..., wa}). Then Vi € |k| 3j € [n] such that w; & {vy,..., vk} \ {0}
and {vq,..., 0} \ {vi} U {w;} is linearly independent.

Proof: Assume not. Then, there exists i € [k| such that for all w;, either w; € {vy,..., v} \
{vi} or {v1,..., v} \ {vi} U {w;} is linearly dependent. Note that this means we cannot
have v; € {wy,...,w,}. (In that case, w; = v; would fail.)

The above gives that for all j € [n], w; € Span ({v1,...,v} \ {vi}). However, this implies

{v1,...,0x} C Span ({wy,...,wn}) C Span ({v1,..., v} \ {vi}),

which is a contradiction. ]



3.1 Finitely generated spaces

A vector space V is said to be finitely generated if there exists a finite set T such that
Span (T') = V. The following is an easy corollary of the Steinitz exchange principle.

Corollary 3.6 Let By = {vy,..., vk} and Bp = {w», ..., wy} be two bases of a finitely generated
vector space V. Then, they must have the same size i.e., k = n.

* Use Exchange principle to successively replace v’s with w’s.
* Never use same w twice (since always linearly indep of current set).
* End with a subset of B, which means k < n.

* Go in other direction to get n < k.



3.1 Finitely generated spaces

A vector space V is said to be finitely generated if there exists a finite set T such that
Span (T') = V. The following is an easy corollary of the Steinitz exchange principle.

Corollary 3.6 Let By = {vy,..., vk} and Bp = {w», ..., wy} be two bases of a finitely generated
vector space V. Then, they must have the same size i.e., k = n.

The above proves that all bases of a finitely generated vector space (if they exist!) have the
same size. It is easy to see that a similar argument can also be used to prove that a basis
must always exist.

Exercise 3.7 Prove that a finitely generated vector space with a generating set T has a basis (which
is a subset of the generating set T).

* If not linearly independent, pick some element that can be written as a linear
combination of the others and remove it. Repeat.



3.1 Finitely generated spaces

A vector space V is said to be finitely generated if there exists a finite set T such that
Span (T') = V. The following is an easy corollary of the Steinitz exchange principle.

Corollary 3.6 Let By = {vy,..., vk} and Bp = {w», ..., wy} be two bases of a finitely generated
vector space V. Then, they must have the same size i.e., k = n.

Exercise 3.8 Let V be a finitely generated vector space and let S C V' be any linearly independent
set. Then S can be “extended” to a basis of V i.e., there exists a basis B such that S C B.

* Recall Proposition 3.4: a basis is a maximal linearly independent set.

* If Sis not a basis, there must exist some v € V' \ S such that S U {v} is linearly
independent. Add itinto S and repeat.



3.1 Finitely generated spaces

A vector space V is said to be finitely generated if there exists a finite set T such that
Span (T') = V. The following is an easy corollary of the Steinitz exchange principle.

Corollary 3.6 Let By = {vy,..., vk} and Bp = {w», ..., wy} be two bases of a finitely generated
vector space V. Then, they must have the same size i.e., k = n.

Exercise 3.8 Let V be a finitely generated vector space and let S C 'V be any linearly independent
set. Then S can be “extended” to a basis of V i.e., there exists a basis B such that S C B.

The size of all bases of a vector space is called the dimension of the vector space, denoted as
dim(V). Using the above arguments, it is also easy to check that any linearly independent
set of the right size must be a basis.

Exercise 3.9 Let V be a finitely generated vector space and let S be a linearly independent set with
S| = dim(V'). Prove that S must be a basis of V.

* If not, you could grow it using Prop 3.4, and get two bases of different size.
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